Skip to main content
Esp32-cam - see out of my apartment window. I am testing my esp32-cam, freeform and micropython setup I mentioned yesterday. With some minor timeout adjustments, I managed to get a rather decent live video stream out of it.


I was using kazam to capture video stream out of the esp32-cam from  a webpage. You can install kazam on you linux machine using apt install.

$ sudo apt install kazam

By the way, I do all my projects on linux machines.

The esp32-cam was program using micropython as image capture and a web server. It listens on port 80 for live video request  and port 81 for still image.


I will write the detail of the code in a later blog post. But as a starter, these are the modules I used in the code.
import usocket as soc
import uasyncio as sy 
import camera 
import time 
import esp 
from machine import Pin 
import gc 
from Wifi import Wifi

Catch you later.

Comments

Popular posts from this blog

Custom made - Sometimes, it is nice to be able to build custom made things. Thanks to Damien George and all the clever people at micropython.org for making it easy. So that, to custom build a micropython is not that difficult. Why do you want to build customize firmware anyway? Well, you might want to include some functionalities of your own and removed some functionalities from the standard distribution. The choices are there for you to make. I have a few changes that I want to make in micropython. version header -kaki5 (pronounce kaki-lima) an additional thread cleanup function for esp32 add frozen modules CryptoXo and uasyncio remove help, upip, and webrepl camera C module for esp32 camera board These are accomplished by modifying and adding files. py/makeversionhdr.py py/modthread.c extra/CryptoXo.py, extra/uasyncio.py, and manifest.py mpconfigport.h main.c and modcamera.c I also want to remove some modules specifically, help, upip, and webrepl from esp32
Multi-threading : I previously used an uasyncio webcam server. This time around, I am testing a multi-thread webcam server. The result is promising. A multi-thread server seems to give a better throughput. The program logic is simpler when compared to the server based on uasyncio. The server is a four threaded application, two for port 80, one for port 81, and port 82 runs on the main thread, which blocks the REPL.  You can start a dedicated thread for port 82 if you do not want to block the REPL. I found pix/7 gives the best performance. A spe/2 will reduce the image size but give you a grayscale image. Please see my previous blog if all these seem mysterious to you. I have compiled a new firmware, MicroPython v1.11-571-g7e374d231.  You can download the new firmware from my repository at GitHub. The soft reset is not functioning properly. You need to do a hard reset. I also include four new functions in modcamera.c: pixformat agcgain aelevels aecvalue The pixformat chan
Micropython - v1.11-498 introduced a few changes in the source-code directory structure. Changes to specific files, as previously described in esp32-cam , will no longer work. A simple working summary on how to build esp32-cam firmware is described below: Make a recursive copy of ports/esp32 to ports/esp32-cam, and you will need to modify the following files: 1) ports/esp32-cam/main.c 2) ports/esp32-cam/Makefile 3) ports/esp32-cam/modcamera.c 4) ports/esp32-cam/mpconfigport.h 5) ports/esp32-cam/boards/manifest.py 6) ports/esp32-cam/boards/sdkconfig.base Or, you can just download a precompiled Micropython v1.11-498 from firmware.bin at GitHub if you want to save some work. However, I encourage you to compile the firmware yourself. You will learn a lot and you can choose to modify anything to your liking. The modcamera.c includes something new. The still photo was taken using these settings; pix =8, con =2, qua =10, and spe =2. You will understand those parameters, later